Improving The Results of Learning Nglegena Javanese Handwriting Using Backpropagation Artificial Neural Network

Authors

  • Arif Budiman Universitas Ahmad Dahlan
  • Abdul Fadlil Universitas Ahmad Dahlan
  • Rusydi Umar Universitas Ahmad Dahlan

DOI:

https://doi.org/10.51276/edu.v4i1.339

Keywords:

Javanese script, artificial neural network backpropagation, chain code

Abstract

The Nglagena Javanese script is one of the cultural assets of the Indonesian nation that needs to be preserved. Various efforts have been made to preserve this script, one of which is using information technology as a learning medium for the Nglagena Javanese script. Information Technology allows the Javanese script to be introduced interactively to students. To support this need, one of which is the ability of information technology to classify Javanese script. Classification of Javanese script is carried out using the Backpropagation Artificial Neural Network (BANN) method. Twenty primary Javanese characters are classified as classes using the Backpropagation Artificial Neural Network (BANN) method. The stages of this research are initial processing, feature extraction, model training, and model testing. Initial processing is carried out to prepare image data so that it is ready for the feature extraction process. The feature extraction method is the Histogram Chain Code (HCC) to obtain the main characteristics of each data class or character of the Nglegena Javanese script. This study compares three research models by adjusting the ratio between the training image data and the test image so that the model that produces the highest accuracy value is produced. The model training and testing process uses 2000 image data, with the percentage distribution of training image data and test images, namely 20%, 80%, second 50%, 50%, and third 80%, 20%, resulting in different levels of accuracy. The results are to produce successive accuracy of 66%, 72%, and 88%.

Downloads

Download data is not yet available.

References

Adyningsih, M., Rusmawati, R. D., & Nurjati, N. (2022). Pengembangan Buku Ajar Cara Cepat Membaca Aksara Jawa dengan Metode Al-Barqy di Tingkat Sekolah Menengah Pertama. Tafhim Al-'Ilmi, 14(1), 81-110.

Alfan, M., & Sulistiyo, E. (2015). Perbandingan media pembelajaran (AutoPlay Media Studio) sebagai alat bantu pembelajaran memperbaiki CD Player siswa Kelas XI di SMK Negeri 3 Surabaya. Jurnal Pendidikan Teknik Elektro, 4(1).

Aqab, S., & Tariq, M. U. (2020). Handwriting recognition using artificial intelligence neural network and image processing. International Journal of Advanced Computer Science and Applications, 11(7).

Arora, S., Bhattacharjee, D., Nasipuri, M., Basu, D. K., & Kundu, M. (2010). Application of Statistical Features in Handwritten Devnagari Character Recognition. arXiv preprint arXiv:1006.5911. https://doi.org/10.48550/arXiv.1006.5911

Banat, A., Febrianti, M., Martiani, M., Juwita, J., & Gustini, G. (2022). Pendampingan Penggunaan Teknologi Media dan Internet Bagi Pengurus Bumdes Teratai Indah Desa Nanti Agung Ilir Talo Kabupaten Seluma. Jurnal Dehasen Untuk Negeri, 1(1), 33-36

Chandra, A. (2022). Handwriting Recognition with ML (An In-Depth Guide). Retrieved from https://nanonets.com/blog/handwritten-character-recognition/

Fatima, W. Q., Khairunisa, L., & Prihatminingtyas, B. (2020). Metode Pembelajaran Berbasis Game untuk Meningkatkan Ketrampilan Membaca dan Menulis Aksara Jawa. Inteligensi: Jurnal Ilmu Pendidikan, 3(1), 17-22. https://doi.org/10.33366/ilg.v3i1.1766

Prihatin, K. (2015). Pengembangan Multimedia Interaktif Aksara Jawa Untuk Siswa Kelas V Sdn Sabdodadi Keyongan Bantul. Basic Education, 4(7).

Qian, Y., Xichang, W., Huaying, Z., Zhen, S., & Jiang, L. (2013). Recognition method for handwritten digits based on improved chain code histogram feature. 3rd International Conference on Multimedia Technology, ICMT-13, 431-438. Atlantis Press.

Rahardjo, T., Degeng, I. N. S., & Soepriyanto, Y. (2019). Pengembangan Multimedia Interaktif Mobile Learning Berbasis Anrdroid Aksara Jawa Kelas X Smk Negeri 5 Malang. Jurnal Kajian Teknologi Pendidikan, 2(3), 195-202. https://doi.org/10.17977/um038v2i32019p195

Sugianela, Y., & Suciati, N. (2019). Ekstraksi fitur pada pengenalan karakter Aksara Jawa berbasis Histogram of Oriented Gradient. JUTI: Jurnal Ilmiah Teknologi Informasi, 17(1), 64-72. https://doi.org/10.12962/j24068535.v17i1.a819

Suparmi, S. (2018). Penggunaan Media Komik Dalam Pembelajaran IPA di Sekolah. Journal of Natural Science and Integration, 1(1), 62-68. https://doi.org/10.24014/jnsi.v1i1.5196

Surjono, H. D. (2017). Multimedia Pembelajaran Interaktif Konsep dan Pengembangan. Yogyakarta: Universitas Negeri Yogyakarta.

Downloads

Published

2023-01-10

How to Cite

Budiman, A., Fadlil, A. ., & Umar, R. . (2023). Improving The Results of Learning Nglegena Javanese Handwriting Using Backpropagation Artificial Neural Network. Edunesia: Jurnal Ilmiah Pendidikan, 4(1), 259–269. https://doi.org/10.51276/edu.v4i1.339

Issue

Section

Article