Technology Acceptance Model (TAM) In The Use of Online Learning Applications During The Covid-19 Pandemic For Parents of Elementary School Students


  • Aulia Nuraini Kusumadewi Binus University
  • Nanda Anthony Lubis Binus University
  • Rhomy Prastiyo Binus University
  • Dewi Tamara Binus University



Covid-19, Elementary school, Online learning, TAM, Partial Least Square-Structural Equation Models


Abstract: School from Home is one of the Indonesian government's efforts to minimize the spread of the Covid-19. All teaching and learning activities have been transferred to various online learning applications, including elementary school students. The parents of these elementary school students have to operate multiple online learning applications so that their children can participate in distance learning activities. Researchers have already used the original Technology Acceptance Model (TAM) to determine the acceptance of online learning applications by parents of elementary school students as a means of distance learning. Researchers want to know the acceptance of online learning applications which are carried out in sudden conditions and without prior preparation but must be implemented. Researchers hope that the results of this study can capture the acceptance of parents of elementary students to School from Home during the Pandemic and can be used for evaluation and continuous improvement of the School from Home system. Referring to the literature with 22 questionnaire questions, the minimum number of respondents who must be obtained is 110 people, in this study 155 parents of elementary school students in Jabodetabek participated in filling out the questionnaire using an online questionnaire with a significance level of 5% and data processed using PLS-SEM 3.0 resulted in a strong relationship. There is no significant difference between Perceived Ease of Use and Attitude Toward Using. Then, a significant relationship was generated between Perceived Ease of Use on Perceived Usefulness, Perceived Usefulness on Attitude Toward Using, Perceived Usefulness on Behavioral Intention To Use, Attitude Toward Using on Behavioral Intention To Use. However, the results show a positive value Path Coefficient in Structural Model Result, so this research is consistent and according to TAM.

Abstrak: School from Home menjadi salah satu upaya pemerintah Indonesia dalam mengurangi penyebaran virus Covid-19. Seluruh kegiatan belajar mengajar dialihkan dengan menggunakan berbagai aplikasi online learning, begitu pula dengan pendidikan untuk murid Sekolah Dasar. Para orang tua murid Sekolah Dasar ini, bagaimanapun juga harus mendampingi dan mengoperasikan berbagai aplikasi online learning agar putra putrinya dapat mengikuti kegiatan pembelajaran jarak jauh. Peneliti menggunakan Technology Acceptance Model (TAM) asli untuk mengetahui penerimaan aplikasi online learning oleh orang tua murid Sekolah Dasar ini sebagai sarana pembelajaran jarak jauh. Peneliti ingin mengetahui penerimaan aplikasi online learning yang dilaksanakan dalam kondisi mendadak dan tanpa persiapan sebelumnya namun harus dilaksanakan. Peneliti berharap hasil penelitian ini dapat menangkap penerimaan orang tua murid siswa SD terhadap School from Home selama Pandemi dan dapat digunakan untuk evaluasi maupun perbaikan berkelanjutan sistem School from Home. Mengacu pada literatur dengan 22 pertanyaan kuesioner, minimum responden yang harus didapatkan sebanyak 110 orang, dalam penelitian ini 155 orang tua murid SD di Jabodetabek berpartisipasi dalam pengisian kuesioner menggunakan online kuesioner dan tingkat signifikansi 5% dan data diolah menggunakan PLS-SEM 3.0 menghasilkan hubungan yang tidak signifikan antara Perceived Ease of Use terhadap Attitude Toward Using. Kemudian, dihasilkan hubungan yang signifikan antara Perceived Ease of Use terhadap Perceived Usefulness, Perceived Usefulness terhadap Attitude Toward Using, Perceived Usefulness terhadap Behavioral Intention To Use, Attitude Toward Using terhadap Behavioral Intention To Use. Namun, Hasil dari model penelitian ini tetap dikatakan konsisten dan sesuai dengan TAM, karena nilai Path Coefficient pada Structural Model Result yang dihasilkan seluruhnya bernilai positif.


Download data is not yet available.


Abbas, H. A., & Hamdy, H. I. (2015). Determinants of continuance intention factor in Kuwait communication market: Case study of Zain-Kuwait. Computers in Human Behavior.

Al-Rahmi, W. M., Alias, N., Othman, M. S., Alzahrani, A. I., Alfarraj, O., Saged, A. A., & Rahman, N. S. A. (2018). Use of E-Learning by University Students in Malaysian Higher Educational Institutions: A Case in Universiti Teknologi Malaysia. IEEE Access.

Al-Smadi, M. O. (2012). Factors Affecting Adoption of Electronic Banking : An Analysis of the Perspectives of Banks ’ Customers. International Journal of Business and Social Science.

Barbosa, T. J. G., & Barbosa, M. J. o. (2019). Zoom: An Innovative Solution for the Live-online Virtual Classroom. HETS Online Journal.

Candarli, D., & Yuksel, H. G. (2012). Students’ Perceptions of Video-Conferencing in the Classrooms in Higher Education. Procedia - Social and Behavioral Sciences.

Chinn, W. W. (1998). The Partial Least Squares Approach to Structural Equation Modelling. Modern Methods for Business Research.

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika.

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science.

Farahat, T. (2012). Applying the Technology Acceptance Model to Online Learning in the Egyptian Universities. Procedia - Social and Behavioral Sciences.

Fishbein, M., & Azjen, I. (1975). Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research. Reading, MA: Addison-Wesley. Contemporary Sociology.

Fornell, C., & Larcker, D. F. (1981). Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics. Journal of Marketing Research.

Hair, Hult, Ringle, & S. (2013). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). Thousand Oaks. Sage.

Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2013). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). Thousand Oaks. Sage.

Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). Second Edition. In California: Sage.

Hair, Joseph F, Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate Data Analysis. In TORUS 1 – Toward an Open Resource Using Services.

Handoko, B. L. (2019). Application of UTAUT theory in higher education online learning. ACM International Conference Proceeding Series.

Hayes, A. F. (2009). Beyond Baron and Kenny: Statistical mediation analysis in the new millennium. Communication Monographs.

Hollingworth, S., Mansaray, A., Allen, K., & Rose, A. (2011). Parents’ perspectives on technology and children’s learning in the home: Social class and the role of the habitus. Journal of Computer Assisted Learning.

Hussein, Z. (2017). Leading to Intention: The Role of Attitude in Relation to Technology Acceptance Model in E-Learning. Procedia Computer Science.

Ibrahim, R., Leng, N. S., Yusoff, R. C. M., Samy, G. N., Masrom, S., & Rizman, Z. I. (2018). E-learning acceptance based on technology acceptance model (TAM). Journal of Fundamental and Applied Sciences.

Kapoor, K., Dwivedi, Y., Piercy, N. C., Lal, B., & Weerakkody, V. (2014). RFID integrated systems in libraries: Extending TAM model for empirically examining the use. Journal of Enterprise Information Management.

Lanlan, Z., Ahmi, A., & Popoola, O. M. J. (2019). Perceived ease of use, perceived usefulness and the usage of computerized accounting systems: A performance of micro and small enterprises (mses) in china. International Journal of Recent Technology and Engineering.

Li, H., & Liu, Y. (2014). Understanding post-adoption behaviors of e-service users in the context of online travel services. Information and Management.

Loanata, T., & Tileng, K. G. (2016). Pengaruh Trust dan Perceived Risk pada Intention To Use Menggunakan Technology Acceptance Model (Studi Kasus Pada Situs E-Commerce Traveloka). Juisi.

Masrom, M. (2007). Technology acceptance model and E-learning. 12th International Conference on Education.

Ozturk, A. B., Bilgihan, A., Nusair, K., & Okumus, F. (2016). What keeps the mobile hotel booking users loyal? Investigating the roles of self-efficacy, compatibility, perceived ease of use, and perceived convenience. International Journal of Information Management.

Park, N., Rhoads, M., Hou, J., & Lee, K. M. (2014). Understanding the acceptance of teleconferencing systems among employees: An extension of the technology acceptance model. Computers in Human Behavior.

Powell, L., & Wimmer, H. (2017). Parental Perceptions and Recommendations of Computing Majors: A Technology Acceptance Model Approach. Information Systems Education Journal.

Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods.

Robinson, T. (2019). Using the Technology Acceptance Model to Examine Technology Acceptance of Online Learning Technologies by Non-Traditional Students. I-Manager’s Journal of Educational Technology.

Rodrigues Pinho, J. C. M., & Soares, A. M. (2011). Examining the technology acceptance model in the adoption of social networks. Journal of Research in Interactive Marketing.

Salloum, S. A., Qasim Mohammad Alhamad, A., Al-Emran, M., Abdel Monem, A., & Shaalan, K. (2019). Exploring students’ acceptance of e-learning through the development of a comprehensive technology acceptance model. IEEE Access.

Santoso, B. (2004). Pengaruh Perceived Usefulness, Perceived Ease Of Use, dan Perceived Enjoyment terhadap Penerimaan Teknologi Informasi (Studi Empiris di Kabupaten Sragen). Studi, Jurnal Indonesia, Akuntansi.

Sekaran, U., & Bougie, R. (2016). Reserach Methods for Bussiness A Skill-Bulding Approach. Printer Trento Srl.

Suh, B., & Han, I. (2002). Effect of trust on customer acceptance of Internet banking. Electronic Commerce Research and Applications.

Sun, L., Tang, Y., & Zuo, W. (2020). Coronavirus pushes education online. In Nature Materials.

Tan, G. W. H., Ooi, K. B., Sim, J. J., & Phusavat, K. (2012). Determinants of mobile learning adoption: An empirical analysis. In Journal of Computer Information Systems.

Tarhini, A., Hone, K., & Liu, X. (2013). User acceptance towards web-based learning systems: Investigating the role of social, organizational and individual factors in european higher education. Procedia Computer Science.

Vijayasarathy, L. R. (2004). Predicting consumer intentions to use on-line shopping: The case for an augmented technology acceptance model. Information and Management.

Wang B. & Ha-Brookshire J.E. (2019). Perceived Cost of New Technology Adoption: Scale Development in the Context of Chinese Textile and Apparel Firm Managers. International Textile and Apparel Association Annual Conference Proceedings.

Weng, F., Yang, R.-J., Ho, H.-J., & Su, H.-M. (2018). A TAM-Based Study of the Attitude towards Use Intention of Multimedia among School Teachers. Applied System Innovation.




How to Cite

Kusumadewi, A. N. ., Lubis, N. A. ., Prastiyo, R., & Tamara, D. (2021). Technology Acceptance Model (TAM) In The Use of Online Learning Applications During The Covid-19 Pandemic For Parents of Elementary School Students. Edunesia : Jurnal Ilmiah Pendidikan, 2(1), 272–292.